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Abstract— The circular, or aperiodic convolution is one of the main operations in linear systems when processing one-dimension (1-

D) and multidimensional signals. In this work we describe a few quantum circuits for the 1-D convolution, by using the concept of the 

quantum Fourier transform. The calculation is considered for a linear time-invariant system for the case, when the frequency 

characteristic of the system. 

Index Terms— Quantum convolution, quantum Fourier transform, quantum computation.   

.  

1 Introduction 
 

HE concepts of the discrete Fourier transform (DFT) and 

linear convolution are very important in processing signals 

[1], [2], [3]. The linear convolution is the operation of a 

linear time-invariant (LTI) system and its fast realization is 

accomplished by the DFT. The quantum circuits for the quantum 

Fourier transform (QFT) are known [4], [5], [6], [7], [8]. The 

design of the quantum circuits for the circular and linear 

convolutions is still the open problem, even if we try to calculate 

this operation by the periodic patterns of the signals [9]. The 

traditional method of reducing the circular convolution of signals 

to the multiplication of their DFTs has not found yet 

implementation in quantum computation.  
In this work, we present our view on the solution of the 

problem of calculation of the convolution, by using the QFT. A 
few quantum circuits are discussed for the convolution in linear 
invariant systems or filers, under the assumption that the impulse 
response or the frequency characteristic of the systems and filters 

are known.  
 

2 Method of Quantum Convolution 
Let us consider the following operations over the input signal and 
given characteristic of a LTA system or filter. For simplicity of 
calculations, we assume that the signal    of length   and the 
characteristic    were normalized, i.e., 

 

∑     
 

   

   

 ∑     
 

   

   

    

  is a power of two,     ,    .  

1. Compose the following       quantum mixed-type 

superposition of states:   
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   ⟩ ∑     ⟩

   

   

        

 

Here, the normalized coefficient  √ ⁄  is omitted, and   ⟩ and 
  ⟩  are the basic states. The circuit element for such a 
superposition is shown in Fig. 1. 
 

2. Use the first qubit as a control qubit and perform the  -

qubit QFT over the superposition of the signal. The result 

is the following      -qubit superposition: 

 

  ⟩    ⟩    ⟩| ̌⟩    ⟩| ̌⟩

   ⟩ ∑     ⟩

   

   

   ⟩ ∑     ⟩ 

   

   

 

  ⟩  ∑(  ⟩   | ⟩  )

   

   

  ⟩                              

The realization of the  -qubit QFT can be accomplished by the 

paired transform-based algorithm [6]. 

 

  

Fig. 1. The circuit element for the      -qubit state      ⟩.   

 

3. Process each 1-qubit state  |  ⟩    ⟩   | ⟩   by the 

diagonal matrix 
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⁄  

   

]                                       

 
   if       otherwise consider the matrix 
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   [
  
  

]  

 
We can consider that       for all frequency-points   

         Otherwise, if this frequency characteristic has zeros, a 

constant can be added to    and considered              

Indeed, the inverse  -point DFT of the constant is the unit 

impulse with amplitude equal to this constant, i.e.,            
Therefore, the convolution changes as 

  

                                 
 

Because the       is known, as well the input signal, the 

component          can be removed from the convolution on 

the final stage of calculations. Thus, we assume that      for 

all          . 

      As the result, we obtain the qubit in the state 

  |  ⟩    [
  

  
]  [

 
    

]    ⟩       ⟩              

which after the normalization will be written as  

 

  |  ⟩  
 

√        
 
(  ⟩       ⟩)  

 

In matrix form, the action of all matrices               can 

be described by the following           diagonal  matrix:  

 

            

 

The diagonal matrices in this Kronecker sum are  

  

      {    }         
              ⁄                 

 

      {    }         
                                    

 
The new      -qubit superposition is 

 

| ̌⟩     ⟩  
 

 
∑(  ⟩       ⟩)

   

   

  ⟩    

          ⟩
 

 
∑       ⟩

   

   

   ⟩
 

 
∑  ⟩

   

   

             

Here, the coefficient   equals  

  √∑       
   

   

   

  

4. Use the first qubit as a control qubit and perform the 

inverse  -qubit QFT of the obtained quantum 

superposition, 

 

∑       ⟩

   

   

   ̌⟩  ∑     ⟩

   

   

                  

Here,    is the circular convolution 

          ∑               

   

   

                      

for          . The normalized coefficients  

√∑       
 

   

   

               √∑   
 

   

   

 

are equal up to the coefficient   √  (because of Parseval’s 

equality) and omitted in the sums in Eq. 8, for simplicity of 

writing.   

    It should be noted that the inverse  -qubit QFT can also be 

used without the controlled qubit. Indeed, as follows from Eq. 7, 

the  -qubit superposition at the first qubit, when it is in the state 

  ⟩ , describes the  -qubit QFT with vales all equal to 1. The 

constant signal is represented by such a superposition,  

{        }  
 

√ 
∑  ⟩ 

   

   

                                 

 
Therefore, the inverse  -qubit QFT over this superposition is the 

unit impulse, i.e., 

 

 

√ 
∑  ⟩

   

   

 ∑     ⟩

   

   

      ⟩                       

If apply the inverse  -qubit QFT to the last   qubits without using 

the first qubit as a controlled qubit, then according to Eqs. 7 and 

11, we obtain the following superposition: 

                  | ̌⟩  
 

 
(  ⟩ ∑     ⟩

   

   

   ⟩     ⟩)

 
 

 
   ⟩  ̌⟩    ⟩     ⟩                        

The normalized coefficient equals to 

  √  ∑   
 

   

   

   

    The information of the frequency characteristic    is used on 

stage 3 of the above algorithm, to compose the matrices   . This 

fact is very important to mention, because otherwise it would be 

necessary to calculate the  -qubit QFT of   , and then to measure 

all values    of the frequency characteristic, which would be very 

difficult to accomplish in the middle of calculation.   

    The quantum circuit for implementing the above algorithm of 

the circular convolution of the signal    is shown in Fig. 2.  
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    In Fig. 3, the quantum circuit for the circular convolution is 

given with more details, with the superpositions on each stage. 

These superpositions are written without the corresponding 

normalized coefficients, in view of the limited space in the 

drawing. 

      If use the  -qubit inverse QFT with the controlled first qubit, 

the quantum circuit for the circular convolution can be drawn, as 

shown in Fig. 4. The measurements of the obtained  -qubit 

superposition when the first qubit in the state   ⟩ will give always 

the result equal  . 

 

3 Circuits for the Linear Convolution 
  

Because the linear convolution of two signals can be reduced to 

the circular convolution after zero padding the signals, the above 

quantum circuits can be used to calculate the linear convolution. 

The zero padding may enlarge the qubit representation of the 

signal, but only by one qubit. We consider the case, when the 

length    of the signal    and the length    the impulse response 

   are such that,               . Then, we denote 

the zero padded signals of length   by 

{ ̃           }  {{             }        } 

{ ̃           }  {{             }        } 

and their  -point DFT by  ̃  and  ̃ , respectively. The quantum 

circuit in Fig. 3, which was modified for calculation of the linear 

convolution  

          ̃   ̃                 
 

is given in Fig. 5.  The input is the       qubit mixed-type 

superposition of states     

         ⟩       ⟩    ⟩| ̌⟩    ⟩| ̌⟩

   ⟩ ∑     ⟩

    

   

   ⟩ ∑  ̃   ⟩

   

   

         

 

 
 

3.1. Circular Convolution with Direct Calculation  

It could be noted that from very beginning we could consider a 

simple quantum circuit which is similar to the circuit for the 

circular convolution in the classical computer. Indeed,  let us 

assume that the V-type matrix is applying only on the  -qubit 

QFT of the signal, as shown in Fig. 6. 

    In this diagram, the matrix    is considered to be equal to the 

diagonal matrix     

       {            }                               

where      denotes the diagonal matrix. The normalized 

coefficient for this matrix is   √          , when all 

coefficients of the frequency characteristic are not zero,    

                 How to implement the multiplication by 

this matrix is a question. In addition, this coefficient maybe very 

large even for small values of  . For instance, the frequency 

characteristic for the impulse response   [         ]   after 

zero padding is shown in Fig. 7 in absolute scale for the       

case. The square root   √                       , 

and for the      and 32 cases, this number equals to   
             and             , respectively. Note that, in 

the quantum circuits of the circular convolution, which are given 

in Figs. 3 and 4, all 2×2 matrices    in Eq. 3 have determinant 

equal 1.   

 

 

Fig. 7. The magnitude of the frequency characteristic    of the filter 

   [         ]  . 

 

 

4    CONCLUSION 

The possible quantum circuits for calculation the linear and 

circular convolution on qubits were discussed. The method of 

calculation of convolutions in these circuits is based on the 

quantum Fourier transform. The convolution is considered for the 

case when the frequency characteristic of the linear-time-invariant 

system is known. 
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Fig. 2.  The quantum circuit for the circular convolution    of the signal. 

 

 

 
 

  

Fig. 3. The quantum circuit for the circular convolution    of the signal. 

 

 

 
 

  

Fig. 4. The second quantum circuit for the circular convolution   . 
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Fig. 5. The quantum circuit for the linear convolution    of the signals. 

 

 

 
 

  

Fig. 6. The quantum circuit with   qubits for the circular convolution   . 
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